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Abstract. A formal expression for the energy-loss function of a fast electron interacting with
an inhomogeneous quasi-2D electron gas in a quantum well is given in the quasiclassical
approximation. It uses the non-local inverse dielectric function derived in a previous paper.
As an illustrative example, the plasmon dispersion relations of a thin metal film embedded
in dielectric caps are calculated, taking into consideration the influence of the empty part of
the electronic spectrum, the dielectric discontinuity of the system and the influence of various
occupied subbands. By following the peaks of the loss function, rather than seeking zeros of
the secular determinant, one can easily obtain the plasmon branches even when these enter the
domains of Landau damping. For several occupied subbands the number of acoustic plasmon
branches is the same as the number of occupied subbands, and the intersubband plasmon branches
at q = 0 appear at energies close to each one of the transitions allowed in the system, which
we call the leading transition of the plasmon branch. The depolarization effect is shown to be
strongly dependent on the population of the system and on the type of the leading transition
involved, i.e. a leading transition between occupied subbands or between one occupied and one
empty subband. Some regularities for this effect are observed, correlating the depolarization
energy with the order of the states involved as the leading transition of the plasmon mode.

1. Introduction

The dielectric function of a quasi-2D electron gas (Q2DEG) has been extensively studied
in the last twenty years [1–21] because of its paramount importance in the interpretation of
some optical experiments and dielectric properties of systems like inversion layers in metal–
insulator–semiconductor systems and modulation-doped heterojunctions, quantum wells and
superlattices. Most of the literature on the subject is devoted to studying the RPA dielectric
function for such systems. In the lowest approximation the electron gas is taken to be
strictly 2D, which leaves only one band of electronic states in the spectrum. Even if the
spatial extent of the wavefunctionsϕn(z) in the z-direction, perpendicular to the interfaces,
is taken into account, the approximation known as the electrical quantum limit has often
been made in which all the carriers are assumed to be in the lowest subband and the rest
of the spectrum is ignored. In some cases the effect of some ‘virtual states’, that is, of
some empty subbands above the occupied ones, is taken into account. In any case the usual
approach is to work in terms of matrix elements between one-electron wavefunctionsϕn(z)

0953-8984/96/060665+11$19.50c© 1996 IOP Publishing Ltd 665



666 K León-Monzón et al

of bare and screened potentials. The dielectric functionε is then written in terms of this
basis and, for the problem of invertingε, the spectrum of one-electron states is truncated
and then the inversion effected in the truncated basis.

It was stressed in [22] that since the spectrum is infinite, a formal mathematical analysis
is in principle required in which one must prove the existence of a unique and bounded
inverse. Such an analysis was given in general terms in [23], where a convergent algorithm
was given which generates a sequence of approximations proven to converge to the exact
solution. This was used to invertε, in the random-phase approximation, in [22], where
the approach differed from the usual one in two respects, namely: (i) the problem was
solved in real space as regards the positionz, that is, having been Fourier transformed in
the planeρ = (x, y), which introduces a 2D wavevectorq, the dielectric function, written
as ε(q, ω; z, z′) was inverted asε−1(q, ω; z, z′), so that the screened potential is obtained
in real z-space as the functionVs(q, ω; z) (the dependence on(q, ω) will be henceforth
everywhere understood when not indicated explicitly); and (ii) the basis functions were not
the ϕn(z); instead, a dual basis oflong- and short-rangefunctions was introduced, as will
be indicated below. These are intrinsically more appropriate to the physics of the dielectric
response and also provide a practical basis for numerical calculations. The effects of the
empty subbands on the screening of an external potential were studied in [22] by direct
evaluation ofVs(z) in real space.

The inverse dielectric function is also crucial in the theory of the energy loss of an
external fast particle [24]. Lacking an explicit formula forε−1(z, z′), in order to study
a confined inhomogeneous electron gas one must resort to approximations. In [25] the
electron gas was assumed to be strictly 2D and the problem was studied in terms of the
surface response function, a concept related to the 2D Fourier transform ofε−1. The energy
loss for a multilayer semi-infinite material was studied in [26] by starting with different
frequency-dependent dielectric functionsεj (ω)—i.e. neglecting spatial dispersion—and then
replacing the multilayer structure by an effective medium with an averageε(ω). Spatial
dispersion for an actual quasi-2D system—a finite semiconductor layer—was taken into
account in [27] by making the so-called diagonal approximation, in which one neglects
quantum interference effects in the description of the confined electron gas. The problem
was then studied by means of Fourier transforms of thez-dependent quantities of interest.

Now, these approximations and complications can be avoided if an explicit formula for
ε−1(z, z′) is available, as will be presently seen. On the other hand, the confined electron gas
is usually embedded between materials of different background crystal dielectric constants.
Such is the case, for instance, for the thin metal film studied in [21], which is embedded in
dielectric caps. The background dielectric discontinuities are in this case substantial, and
one may enquire whether taking a proper account of the background dielectric discontinuity
may have appreciable consequences.

The purpose of this paper is to give a very simple derivation of an explicit formula for
the energy-loss function in terms ofε−1(z, z′) and to use this to extract from its peaks the
dispersion relations of the plasmons of the thin metal film studied in [21] with a view to
studying the effects of (i) background dielectric discontinuities and (ii) empty subbands.

2. The inverse dielectric function

We summarize here the formula derived in [22] forε−1(z, z′). Given any pair of functions
ϕn andϕn′ , the short-range functionSnn′ is defined as

Snn′(z) = ϕn(z)ϕn′(z) (1)
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and thelong-range functionLnn′ by

Lnn′(z) =
∫

dz′ G(z, z′)Snn′(z′) (2)

whereG(z, z′) is the Green function for the Poisson equation in the background dielectric
structure in the absence of the electron gas. The appropriateness of theLnn′(z) andSnn′(z′)
for forming a dual basis for non-local functions of(z, z′) is clear from the physical meaning
of (1) and (2):Snn′ is an element of the density matrix andLnn′ is the electrostatic potential
created atz by a charge densitySnn′(z′). Now, in the random-phase approximation,ε(z, z′)
is of the form

ε(z, z′) = δ(z − z′) − 1

Sxy

∑
n,n′

∑
κ,κ′

Lnn′(z)Pnn′(q, ω)Snn′(z′) (3)

where thePnn′ are 2D, RPA polarizability terms. It proves convenient to introduce a new
labelling of the terms so that each pair of discrete labels,(n, n′), becomes one discrete label
µ. A convenient and physically meaningful way of carrying out this process was explained
in [22]. Then, in the new labelling, the inverse dielectric functionε−1(z, z′) satisfying the
condition ∫

dz′′ ε(z, z′′)ε−1(z′′, z′) = δ(z − z′) (4)

is

ε−1(z, z′) = δ(z − z′) +
∑
µν

Lµ(z)MµνSν(z
′) (5)

where the matrixM of elementsMµν is obtained as follows. Define the matrixβ of
elements:

βµν =
∫

dz Sµ(z)Lν(z) (6)

and the diagonal matrixP of elementsPµδµν . Then the matrixM is

M = (I − Pβ)
−1 P. (7)

The point to note is that the matrix to be inverted is infinite, corresponding to the fact
that the spectrum of electronic states is infinite, and this in principle requires a formal
mathematical analysis which must start by first proving the existence of a bounded and
unique inverse. The general conditions for the existence of the inverse were established
in [23], where a convergent algorithm was obtained. This justifies the process in which
onefirst truncates the infinite matrix—i.e. the electronic spectrum—andthen inverts while
establishing an algorithm which generates a sequence of results for the successive truncations
which converges to the exact answer. This was applied in [22] to the inversion ofε in the
manner summarized above.

Now, the long-range functionsLµ(z) contain the Green function of the Poisson equation,
as seen in equation (2). If the background crystal is homogeneous, thenG(z, z′) is simply

G(z, z′) = 2πe2

qεx

e−q|z−z′| (8)

but if one wants to study a general sandwich type of structure A–B–C, where A and C may
or may not be equal, but they are in any case different from B, where the confined electron
gas is contained, then one wantsG for the background dielectric heterostructureε1–ε2–ε3,
whereε1 and ε3 may or may not be equal but are different fromε2. The corresponding
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G can be readily obtained in exact form by using the method of surface Green function
matching [28]. The result is

G(z, z′) = 2πe2

q
e−q|z−z′|g(z, z′) (9)

with g(z, z′) given by:

g(z, z′) =



g3H1(z
′) + h2(1 − H1(z

′))G1(z
′) z ∈ A, z′ ∈ B

g1G1(z
′) + h2(K1(z

′) − 1)H1(z
′) z ∈ C, z′ ∈ B

g3H1(z) + h2(1 − H1(z))G1(z) z ∈ B, z′ ∈ A

g1G(z) + h2(K1(z) − 1)H1(z) z ∈ B, z′ ∈ C

(1/G1(d))
[
(1/ε2)G1(z)H1(z

′)
+ (1/γ )(K1(d) − 1)S1(q; z, z′)

]
z, z′ ∈ B; z 6 z′

(1/G1(d))
[
(1/ε2)H1(z)G1(z

′)
+ (1/γ )(K1(d) − 1)S2(q; z, z′)

]
z, z′ ∈ B; z′ 6 z

(1/ε1)
[
1 + eq|z−z′|eq(z+z′)

[
h1γ32G1(d) − 1

]]
z, z′ ∈ A

(1/ε3)
[
1 + e2qdeq|z−z′|eq(z+z′)

[
h3γ12G1(d) − 1

]]
z, z′ ∈ C

h2G1(d) z ∈ A, z′ ∈ C
or vice versa

where

H1(z) = 1 − e−2q(d−z) G1(z) = 1 − e−2qz K1(z) = 1 + e−2qz

g1 = 2
γ12

γ
g3 = 2

γ32

γ

h1 = 4
ε1

γ
h2 = 4

ε2

γ
h3 = 4

ε3

γ

γ = G1(d)
[
(ε1ε3 + ε2

2)G1(d) + ε2(ε1 + ε3)K1(d)
]

γ12 = ε1G1(d) + ε2K1(d) γ32 = ε3G1(d) + ε2K1(d)

S1(q; z, z′) = e−2q(z−z′)H1(z)G1(z
′) + G1(z)H1(z

′) + Q(z, z′)

S2(q; z, z′) = e2q(z−z′)G1(z)H1(z
′) + H1(z)G1(z

′) + Q(z, z′)

Q(z, z′) = 0.5
[
γ32e2q(d−z)H1(z)H1(z

′) + γ12e2qz′
G1(z)G1(z

′)
]
.

3. The power loss

Once an explicit formula forε−1(z, z′) is available it is a simple matter to obtain another
explicit formula for the power loss of a fast external moving charge in interaction with the
confined electron gas. It was shown in [29] that the full quantum-mechanical analysis does
not really add anything new to the semi-classical treatment [24] in which the external fast
particle is described classically. This approach will be used here.
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We consider a reflecting trajectory in which an external fast electron constitutes an
external charge density:

σ0(r, t) = −eδ(r − V t) (10)

where the velocity

V = w + u (11)

has a constant parallel componentw and a perpendicular component

u(t) = [uθ(−t) − uθ(t)] z0 (12)

which changes sign att = 0, when the Heaviside step functionθ changes sign. We consider
three cases, namely (a) wherew 6= 0 andu 6= 0, (b) whereu = 0, V = w and (c) where
w = 0, V = u. The 2D Fourier transform of the external charge density is

σ0(q, ω,V , z) = −e


(2/u) cos

[
(α/u)z

]
case (a)

2πδ(α)δ(z − z0) case (b)

(1/u)eiωz/u case (c)

(13)

where

α = ω − q · w (14)

and z0 is the constant value ofz for the parallel trajectory (u = 0). This produces an
external potential:

80(q, ω,V , z) =
∫

dz′ GP (q, z, z′)σ (q, ω,V ; z′) = −eψ(q, ω,V , z). (15)

This definesψ. The induced potential, accounting for the response of the confined electron
gas, is

8I(q, ω,V , z) = −e
∑
µν

Lµ(q, z)Mµν(q, ω)Uν(q, ω,V ) (16)

where

Uν(q, ω,V ) =
∫

dz′ Sν(z
′)ψ(q, ω,V , z′). (17)

On Fourier transforming back in 2D fromq to ρ = (x, y), we have8I(ρ, ω,V ; z), whence
the total energy loss is given by

W = −e

∫ ∞

−∞
dt V · ∇8I(ρ, V , z, t)|r=V t . (18)

On Fourier transforming in 1D fromLµ(q, z) to Lµ(q, k) this yields (taking into
consideration thatQ = q + kz0):

W = e2

(2π)3
Im

{ ∫
d2q

∫
dω

∫
dk [Q · V ] δ [Q · V − ω]

×
∑
µν

Lµ(q, k)Mµν(q, ω)Uν(q, ω,V )

}
(19)

whence equating this to

W =
∫

d2q

∫
ω dω P(q · ω) (20)
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we obtain the power loss function:

P(q, ω) = − e2

(2π)3



π

u2
Im

[∑
µν

(
Lµ

(
q,

q · w − ω

u

)
−Lµ

(
q,

ω − q · w

u

))
× Mµν(q, ω)Uν(q, ω,V )

]
case (a)

2π Im

[∑
µν

Lµ(q, z0)Mµν(q, ω)U0
ν (q, z0)

]
case (b)

1

u2
Im

[∑
µν

Lµ(q, ω/u)Mµν(q, ω)Uν(q, ω, u)

]
case (c).

(21)

The quantityU0 of case (b) is defined by

Uν(q, ω,w) = 2πδ(ω − q · w)U0
ν (q, z0). (22)

This provides a formula for the calculation of the power loss which uses directly the explicit
formula for ε−1(z, z′).

As a useful byproduct one can obtain from here the normal modes of the confined
electron gas.

4. Plasmons in a thin metal film

We now consider plasmons in a thin metal film, the problem studied in [21], where up to
two occupied subbands and some empty ones were included in the calculations. The film
thickness isd = 23.9 Å and the quantum well is assumed to have infinite barriers. The
2D polarizability elements can then be easily obtained analytically as functions of(q, ω)

[21]. The plasmon dispersion relations can be obtained either from the zeros of the secular
determinant [22]:

det|Mµν(q, ω)| = 0 (23)

or from the peaks of the loss function. In the first case the analysis of [22] provides a direct
physical interpretation of the results obtained in successive approximations but this has a
limitation, when a plasmon branch enters a Landau damping region in the(ω, q) diagram.
The zeros of (23) are then complex and tracking them soon becomes a very cumbersome
numerical task, while the peaks of the loss function can sometimes be followed well into
the damping region.

We followed the second procedure, with occasional checks based on a complementary
study of the secular determinant (23).

Figure 1 shows the first four branches obtained for the case of one occupied subband.
The total number of subbands included in the calculation was nine, which proved sufficiently
accurate. In order to account for the dielectric cap we tookεA = εB = 1, εC = 12 and used
the electrostatic Green function given in (9) with a view to studying the possible effects
of the background dielectric discontinuity. The results—dashed lines—actually turn out to
be very close to those obtained forεA = εB = εC—full lines. The maximum deviation



Plasmons in a thin metal layer 671

Figure 1. Plasmon dispersion relations for the first four modes of a thin metal film (d = 23.9 Å)
in the infinite-barrier model.E1 is the energy of the ground state and only the lowest subband is
occupied, the Fermi energy beingEF = 3.5E1. Nine subbands were included in the calculation.
Full lines: εA = εB = εC = 1. Dashed lines:εA = εB = 1, εC = 12. The shaded regions are
domains of Landau damping associated with intra- or intersubband excitations and are labelled
L(n, n′), while theP(n, n′) denote the plasmon branches.

occurs for the intraband mode(1, 1) aroundq = 0.2kF and amounts to 8 meV, while typical
experimental resolutions in EELS spectra are about 20 meV [30]. Thus the results appear
to be in practice quite insensitive to the background dielectric discontinuity even though
this would seem to be quite substantial; consequently from this point on we simply took
εA = εB = εC = 1 everywhere. We also note that the dispersion branches are very similar
to those obtained in [21], except for the first interband mode(2, 1), which behaves quite
differently for low values ofq. The present result was corroborated (a) from the peak of
the loss function and (b) from the zero of the secular determinant and both were in perfect
agreement as long as the second method worked.

Figure 2 shows results obtained for the same situation as in figure 1—one occupied
subband—but demonstrates the effects of truncating the spectrum of the electronic states.
Even if only one subband is occupied it is known, both for the plasmon dispersion relation
[21] and for the dynamical screening of an external potential [22], that the electrical quantum
limit can be a poor approximation. Figure 2 compares the first four plasmon dispersion
relations obtained when the total number of subbands included in the calculation isnine
(full lines) or two (dashed lines). It suffices to show the results for the first two branches.
The differences are quite substantial. For instance, for the first interband mode(2, 1) at
q = 0.2kF the difference amounts to 58 meV which is sufficient to be experimentally
detectable [30]. Note, incidentally, that the labels S (symmetric) and A (antisymmetric)
have now been added to the band indices(n, n′), since withεA = εB = εC the structure is
now fully symmetric.
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Figure 2. The same situation as in figure 1, but withεA = εB = εC . Full lines: nine subbands
included in the calculation. Dashed lines: onlytwo subbands included. A new label S (for
symmetric modes:n + n′ even) or A (for antisymmetric modes:n + n′ odd) has been added to
L(n, n′) andP(n, n′).

As shown in [23], the formulation in terms of the{Lµ(z), Sν(z
′)} basis functions yields

a direct factorization of the symmetric and antisymmetric parts in real space which is very
useful in separating out all the results. This proves rather practical in a situation like that
shown in figures 3 and 4, which show several plasmon branches, from(3, 3) in figure 3
to (6, 3) in figure 4, when three subbands are occupied andtwenty sevenare taken into
account in the calculation. There are three intrasubband modes starting fromω = 0, the
lowest one being(3, 3) as it corresponds to the lowest population. The nature of the coupling
between these modes, which is not dynamical, was discussed in [22]. We note that these
three modes have the same symmetry, asn + n′ is even in all of them, and each one of
them can decay when it is inside any intrasubband Landau damping region of ground-state
subband energy larger than or equal to that of the intrasubband plasmon under discussion.
Consequently the figure shows only theLS(1, 1) Landau damping domain, which has the
highest boundary and includes the domainsLS(2, 2) and LS(3, 3). Thus the(3, 3) and
(2, 2) intrasubband plasmon branches are fully within damping regions; although there is
no numerical problem in following them up through the peaks of the loss function, which
indicates that the damping is not very strong. The highest intrasubband mode(1, 1) is the
only one which has a starting range in which it is fully long lived. The figures display the
situation for the rest of the modes.

The intersubband plasmons(n, n′) start at energies above the threshold1Enn′ = En′−En

of the corresponding single-particle intersubband excitations due to the depolarization effect
[7] arising out of the mutual screening among the electron gases in the different subbands.
In the usual secular determinant approach these effects reside in the non-diagonal elements,
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Figure 3. Symmetric plasmon branches and Landau damping domains when three subbands are
occupied (EF = 10.5E1) and twenty sevensubbands are included in the calculation.

Table 1. The depolarization energy shift (1P ) in units of E1 for the different plasmon modes
obtained for various numbers of occupied subbands. The transitions between occupied subbands
are listed above the horizontal lines.1Enn′ is also in units ofE1.

One occupied subbands Two occupied subbands Three occupied subbands Four occupied subbands

n n′ 1Enn′ 1P n n′ 1Enn′ 1P n n′ 1Enn′ 1P n n′ 1Enn′ 1P

1 2 3 3.9 1 2 3 1.9 1 2 3 2 1 2 3 2
1 3 8 3 2 3 5 5.9 2 3 5 2 2 3 5 2
1 4 15 1.7 1 3 8 4 1 3 8 4 3 4 7 2

2 4 12 4.9 3 4 7 4 1 3 8 3
1 4 15 2.6 2 4 12 3.2 2 4 12 3.1
2 5 21 2 1 4 15 3.4 1 4 15 3.9
1 5 24 2 3 5 16 5.7 4 5 9 3

2 5 21 5.1 3 5 16 3.4
1 5 24 3.2 4 6 20 1.5
3 6 27 2 2 5 21 3.9

1 5 24 3
3 6 27 1

which are static in nature butq-dependent and non-vanishing in the limitq → 0. Table 1
displays the intersubband excitation energies1Enn′ and corresponding depolarization shifts
1P . Some approximate trends can be identified. Forn and n′ corresponding to occupied
subbands,1P increases as1n increases, while in the cases whenn is occupied andn′

unoccupied, for fixedn′ 1P tends to increase as1n decreases. This holds for as long as
the corresponding excitation energies are energetically ordered, which in this case occurs
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Figure 4. Antisymmetric modes for the same case as in figure 3.

for up to three occupied subbands. From then on this ordering is broken and it is difficult
to identify any systematic trend.

5. Final comments

Some attempts have been made by various authors at inverting the dielectric function
in real space for semi-infinite [31, 32] or superlattice [33–35] systems based on various
approximations from the start. The approach of [22] is quite different. The formulation
holds for a bounded inhomogeneous electron gas confined to a finite domain which could be
bounded in one, two or three dimensions and is valid under quite general approximations,
the only restriction being the random-phase approximation. This paper complements [22]
in the study of different questions of physical interest related to the explicit inversion of
ε(z, z′) in real space for a planar structure of the quantum well type in the RPA. We find
that the long- and short-range functions, besides having an appealing physical meaning,
prove very practical for numerical calculations, and with the relabelling(n, n′) → µ one
can easily study the effects of including any desired number of empty subbands, which
actually turn out to be quite significant, as demonstrated in figure 2.

The model application worked out here serves only a demonstrative purpose but it
illustrates (i) some trends in the behaviour of the depolarization shift for intersubband
plasmons and (ii) the fact that, contrary to what might have seemed a plausible expectation,
the effects of accounting for the background dielectric discontinuity are quite negligible,
even in the case of a metal film on a dielectric cap, where one might have anticipated
substantial effects.

The formulation is not restricted to the infinite-barrier model and one could equally start
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from more accurate electronic wavefunctions for a more realistic calculation, as long as the
RPA is acceptable for the problem under study. The interesting question now is that of
how to improve upon the RPA. This is not a trivial matter for the bounded inhomogeneous
electron gas, but one may expect that since there is no reason for the long- and short-range
one-electron wavefunctions to be in any way different, one may find the same mathematical
structure as reflected in (3) with different 2D polarizabilities. The formal mathematical
basis and the practical algorithms developed in [23] and used in [22] and here could then be
equally employed and one may anticipate that once the new 2D polarizabilities have been
obtained, the closed expression for the improvedε(z, z′) will have a similar form. Work on
this problem is currently going on in our group.
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[23] Ferńandez-Velicia F J, Garcı́a-Moliner F and Velasco V R 1995J. Phys. A: Math. Gen.28 391
[24] Ritchie R H 1957Phys. Rev.106 874
[25] Persson B N J 1984Solid State Commun.52 811
[26] Lambin P, Vigneron J P and Lucas A A 1985Phys. Rev.B 32 8203
[27] Gumbs G and Horing N J M 1991Phys. Rev.B 43 2119
[28] Garćıa-Moliner F and Velasco V R 1992 Theory of Single and Multiple Interfaces(Singapore: World

Scientific)
[29] Flores F and Garcı́a-Moliner F 1979J. Phys. C: Solid State Phys.12 907
[30] Rocca M, Biggio F and Valbusa U 1990Phys. Rev.B 42 2835
[31] Newns D M 1959Phys, Rev.115 1342
[32] Horing N J M, Kamen E and Cui H L 1985 Phys. Rev.B 32 2184
[33] Horing N J M, Fiorenza G and Cui H L 1985 Phys. Rev.B 31 6349
[34] Horing N J M andMancini J D 1986Phys. Rev.B 34 8954
[35] King-Smith R D and Inkson J C 1986Phys. Rev.B 33 5489


